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Abstract 

Computationally efficient procedures are described 
for the deconvolution of disoriented fiber diffraction 
data to the resolution limit of measurable intensity 
in the patterns. The methods can be applied to diffrac- 
tion data from imperfectly parallel arrays of one- 
dimensionally periodic rods or two-dimensionally 
periodic sheets, randomly rotated about their unique 
axes, to derive a representation of the intensity distri- 
bution corresponding to perfectly parallel orienta- 
tion. With use of angular convolution and local 
angular regression, a set of uniform cylindrically 
averaged squared structure factors are iteratively 
adjusted, subject to a minimum-wavelength con- 
straint, until they produce a disoriented pattern that 
fits the observed diffraction data. The results from 
this deconvolution provide a measure of the properly 
scaled cylindrically averaged squared structure fac- 
tors, which can be used with other structural informa- 
tion to construct a physically plausible trial model 
suitable for further refinement. Sample deconvolu- 
tions of simulated X-ray patterns from partially orien- 
ted gap junction membranes are presented and the 
results from point-model deconvolutions are com- 
pared to those from constrained deconvolutions that 
began with the transform of a physically plausible 
trial model. 

Introduction 

The field of fiber diffraction encompasses a variety 
of analytical and computational techniques for struc- 
tural characterization of oriented polymer chains 
(Alexander, 1969), rod-shaped protein filaments 
(Dickerson, 1964) and sheet-like lipid membranes 
(Makowski & Li, 1983). Since the pioneering X-ray 
work on the natural fibers hair and wool (Astbury & 
Street, 1931), a wide variety of biopolymers and bio- 
molecular assemblies have been studied with the 
increasingly sophisticated techniques of fiber diffrac- 
tion. Recent papers have concerned, for example, 
wrinkled DNA (Arnott, Chandrasekaran, Puigjaner, 
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Walker, Hall, Birdsall & Ratcliff, 1983), porin lattices 
(Biildt, Mischel, Hentschel, Regenass & Rosenbush, 
1986), tobacco mosaic virus (Namba, Pattanayek & 
Stubbs, 1989), bacterial flagella (Namba, Yamashita 
& Vonderviszt, 1989), F-actin (Holmes, Popp, 
Gebhard & Kabsch, 1990), gap junctions (Tibbitts, 
Caspar, Phillips & Goodenough, 1990) and pfl bac- 
teriophage (Nambudripad, Stark, Opella & 
Makowski, 1991). 

X-ray diffraction patterns from oriented rod-like 
particles or oriented multilayered sheets correspond 
to the intensity distribution from a single particle or 
sheet that has been cylindrically averaged. When rods 
are aligned with their long axes parallel in a fiber, 
they will generally arrange themselves into an imper- 
fect lattice with the particles not in register and rota- 
tionally disordered about their long axes, so that the 
ensemble is uniformly distributed with respect to the 
azimuthal angle @. Azimuthal disorder also exists in 
parallel membrane multilayers. The sheets are aligned 
perpendicular to a unique axis but may be rotated by 
any random angle about that axis. Diffraction patterns 
from azimuthally disordered samples of parallel rods 
or sheets are thus similar to a photograph of a single 
crystal rotating about a unique axis (see Holmes & 
Blow, 1966). 

Both oriented rod-like biomolecules and mem- 
brane sheets that have periodic internal structure give 
rise to cylindrically averaged diffraction patterns in 
which the intensity is confined to a set of layer or 
lattice lines, so that methods for analysis of the two 
types of patterns are similar. Rods may have a one- 
dimensional repeating structural motif along their 
long axis: examples are protein s-helices, nucleic 
acid double helices and helical arrangements of pro- 
tein subunits such as F-actin (see Dickerson, 1964). 
One-dimensional periodicity is also observed, for 
example, in silk fibroin (Bamford, Brown, Elliot, 
Hanby & Trotter, 1954) and amyloid fibrils (Fraser, 
Nguyen, Surewicz & Kirschner, 1991). Similarly, in 
some sheet-like biological membranes a two- 
dimensional lattice of membrane proteins occurs 
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naturally or can form during isolation or by reconsti- 
tution of isolated membrane components: examples 
are bacteriorhodopsin, Na+/K÷-ATPase and gap 
junctions (see Gennis, 1989). 

Patterns from one- and two-dimensionally periodic 
samples can be useful for the refinement of structural 
models of fibers and membranes, if they can provide 
estimates of cylindrically averaged squared structure 
factors. However, it is difficult to obtain this informa- 
tion from experimental fiber or membrane diffraction 
data because of imperfect orientation of the particles 
or sheets. Measurements from these patterns must 
take into account the effects of azimuthal disorder in 
the sample combined with imperfect orientation, 
finite coherence of diffracting domains and finite col- 
limation of the radiation source. Thus, the first and 
rather difficult step is to estimate a set of positive real 
numbers from the digitized diffraction pattern to rep- 
resent the cylindrically averaged structure factors, 
(F2)~,, sampled at the points (Rq, Zq). These estimates 
may then be used with other information to formulate 
a plausible initial structural model. 

Numerical angular deconvolution (Makowski, 
1978) has been widely used to estimate (F2)~, from 
mildly disoriented patterns and has enabled success- 
ful refinement of the tobacco mosaic virus structure 
to 2.9 ]k resolution (Namba, Pattenayek & Stubbs, 
1989). Angular deconvolution uses matrix inversion 
of a set of equations describing the overlapping com- 
ponents in the digitized pattern and correction factors 
based on the derived form for the intensity distribu- 
tion expected in mildly disoriented fiber diffraction 
patterns (Holmes & Leigh, 1974; Stubbs, 1974). 

Generally, deconvolution by matrix inversion has 
limitations and requires some simplifying assump- 
tions. The correction factors used become progress- 
ively less reliable close to the rotation axis of the 
pattern and thus scaling of the off-meridional to 
meridional (F2), is not straightforward. Perfect beam 
collimation and regular order within the structural 
units must often be assumed because correction for 
the combined effects of disorientation with beam 
divergence and finite coherence of one- or two- 
dimensionally periodic structures makes the problem 
unmanageably complex. At higher scattering angles, 
overlap of reflections due to disorientation and line- 
width broadening eventually limits the resolution 
to which deconvolution can be applied. Beyond 
this limit, matrix inversion becomes impossible 
(Makowski, 1991). 

To overcome these difficulties, we have undertaken 
the development of computationally efficient methods 
for deconvoluting disoriented cylindrically averaged 
diffraction patterns, based on repeated simulation of 
the whole observed pattern (Tibbitts, Caspar, Phillips 
& Goodenough, 1988). Our angular convolution pro- 
cedures at least partially overcome the problem of 
line overlap to allow extraction of the maximum 

amount of information from poorly oriented samples. 
In our analysis, a starting set of (F2)g, from equal- 
magnitude structure factors are iteratively adjusted 
to fit the disoriented data. Adjustment coefficients are 
determined by simulation of a disoriented diffraction 
pattern and performance of local angular regressions 
of the predicted pattern to the data. Simulation, 
regression and adjustment are repeated in a loop until 
the difference between model pattern and data is 
minimized. By simulating the effects of the various 
convoluting functions, these procedures can thus pro- 
vide reliable first estimates of the (F2)~, even from 
diffraction patterns showing significant disorientation 
and disorder. 

In this paper, formulas for our iterative convolution 
and local regression procedures are worked out for 
patterns from one-dimensionally periodic rods and 
two-dimensionally periodic sheets, and tested with 
some sample deconvolutions of simulated X-ray 
diffraction patterns from imperfectly oriented gap 
junction membranes. In the trials, reasonable esti- 
mates of the (F2)~, were obtained that properly scaled 
meridional and off-meridional data and took into 
account cylindrical averaging, disorientation, beam 
divergence and specimen disorder. 

Theory and methods 

Simulation of azimuthal disorder 

Simulation of fiber diffraction patterns from imper- 
fectly oriented rods or sheets requires an efficient 
method for the calculation of the combined effects 
of cylindrical averaging and disorientation at each 
pixel. Our steps were: (1) calculate III, the cylindri- 
cally averaged diffraction pattern from perfectly 
parallel rods or sheets, with factors that determine 
the finite width of the lines taken into account; (2) 
introduce disorientation by smearing each point in 
the Ill pattern to give a disoriented pattern, I\/; (3) 
convolute the disoriented pattern I \ /with a function 
to simulate divergence of the incident beam of radi- 
ation. The first step, calculating an Ill pattern given 
a trial set of (F2~,, is slightly different for one- and 
two-dimensionally periodic samples but all sub- 
sequent steps in the simulations are the same. 

Calculation of patterns for parallel one-dimensionally 
periodic rods. For a one-dimensionally periodic par- 
ticle, intensity in the transform will be negligible 
except in a series of layer planes perpendicular to the 
Z axis, which is aligned with the particle axis in real 
space. The heights of these planes satisfy the relation- 
ship Z = I/c, where l is the layer-plane index and c 
is the period along the particle axis. Other symbols 
used are given in Table 1. In general, particles in a 
fiber will be rotationally disordered about the fiber 
axis and intensity within the layer planes will be 
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Table 1. Symbols used 

Cylindrical polar coordinates in reciprocal space 
Spherical polar coordinates in reciprocal space 
Structure factor 
Squared structure factor FF* 
Cylindrically averaged squared structure factor 
The set {(F2(Rq, Zq))O } 
Cylindrical coordinate of a sample point q e (F2)~ 
Spherical coordinate of a sample point q e (F2), 
Real part of structure factor 
Imaginary part of structure factor 
Miller indices for reciprocal-lattice lines 
Lattice (or layer) line sample point index 
Lattice (or layer) line lateral profile 
Coherence length 
Intensity from perfectly parallel rods or sheets 
Intensity from disoriented rods or sheets 
Intensity in expected (or experimental) disoriented 

pattern 
Intensity in model disoriented pattern 
The angle ~ for a point in 111 
Disorientation distribution 
Inclination relative to the axis of mean orientation 
Disorientation parameter 
Intensity in Gaussian disoriented pattern 
The shape factor, exp (-x)`go(X) 
Hyperbolic Bessel function 

--! 2-n- 
`go(X) = (2~r) I~=o exp (x cos 0) dO 

Angular distribution for a Debye-Scherrer arc 
Adjustment coefficient for a point q ~ (F2), 
Adjusted set of structure factors 
Measure of agreement between two disoriented 

patterns 
Measure of agreement between two sets of (F2), 
Density distribution in real-space polar coordinates 

cylindrically averaged. The intersections of the sphere 
of reflection with these layer planes are layer lines, 
which appear as hyperbolas on a flat film (see Guinier, 
1963). The intensity distribution from helical assem- 
blies is further limited to a set of layer lines that 
satisfy a selection rule; at a point at radius R on line 
l, the intensity can be expressed in terms of Fourier- 
Bessel structure factors as ~ ,  G,~(R)G*t(R), where 
n is the order of the Bessel function (see Klug, Crick 
& Wyckoff, 1958). To use a general index q for 
coordinates of the cylindrically averaged squared 
structure factors (F2)~0, we define FZn(R,Z)= 
G,z(R)G*t(R) and sample along the layer lines at 
intervals of 8R, 

E G.,(R)G*t(R)=~ F2(m3R, I/c) (1) 
n n 

:~. F2(Rq, Zq) (2) 
n 

=(F2(Rq, Zq)),. (3) 

Given a trial set of (F2)0, the axial repeat c and a 
layer-line profile f ( t ) ,  the general formula for calcula- 
tion of the diffraction pattern from perfectly parallel 
rod-shaped helical particles is 

III(R,Z)=~ (F2(Rq, Zq))4,f(t), (4) 
q 

where t = Z - Z q  measures the lateral distance from 
the layer line centered at Zq. Stubbs (1974) investi- 

gated lateral profiles of layer lines in diffraction pat- 
terns from tobacco mosaic virus and paramyosin 
fibers and suggested the Gaussian form fc(P; t)= 
exp [ -  zrp2 t2], with standard deviation to = 
1/(27rl/2p), where p is the coherence length of the 
particle. 

Calculation of patterns for parallel two-dimensionally 
periodic sheets. Simulation of diffraction patterns from 
parallel two-dimensionally periodic sheets is slightly 
different from the above since the profile of lattice 
lines in the pattern depends on the radius R due to 
cylindrical averaging. For a single planar crystalline 
array of identical subunits, intensity in the transform 
is confined to a lattice of parallel lines. In a multi- 
layered sample with perfect orientation but with the 
sheets rotationally disordered about their normal 
direction, the reciprocal-lattice lines are replaced by 
concentric cylinders. Intersection of the sphere of 
reflection with these concentric cylinders gives rise 
to lines in the diffraction pattern, which appear as 
distorted ovals on a flat film; each line measured from 
the film represents intensity from one or more 
reciprocal-lattice lines averaged together (see 
Guinier, 1963). To use a general index q for the 
coordinates of the cylindrically averaged structure 
factors, we sum the contributions from lattice lines 
(h, k) with the same radius R and sample along each 
line at intervals of ~z, 

~, Fhk(Z)F~k(Z)= ~, FEhk(ghk, m3z) 
h,k  h , k  

(5) 

= Z F2hk(Rq, Zq) (6) 
h ,k  

=(FE(Rq, Zq))~. (7) 

Given a trial set of (F2)4, for the lattice constant a 
and a reciprocal-lattice line profile f ( t ) ,  from Fig. 1 
the general formula for the calculation of a pattern 
from perfectly parallel two-dimensionally periodic 
sheets that properly scales the near-meridional to 
off-meridional data is 

2~r 

ILI(R,Z)=F. n(F2(Rq, Zq)), ~ f ( t )  d~b. (8) 
q ~=0 

The n are multiplicity integers that depend upon the 
rotational symmetry at the origin of the reciprocal 
lattice. For a hexagonal lattice, n = 1 for points on 
the meridian and n =6  for sample points on off- 
meriodional lines. From the cosine law, the lateral 
distance t, measured from the center of the line 
located at Rq, is given by t 2 = R2+ R2q-2RRq cos ~. 
Equation (8) makes no assumptions about the 
intrinsic shape of the lattice line profile f ( t )  and 
therefore Ill can be evaluated by numerical integration 
[with use of, for example, subroutines provided by 
Press, Flannery, Teukolsky & Vetterling (1988)] for 
any empirical function f(t).  
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However, if we assume that the reciprocal-lattice 
lines have a Gaussian lateral profile, the integral in 
(8) can be evaluated analytically. Le t f ( t )  = f ~ ( p ;  t) = 
exp(-Trp2t2). With use of  the identity R E + R  E= 
(R  - Rq)2+ 2RRq and the integral form of  the hyper- 
bolic Bessel function ~o [see Table I of Abramowitz 
& Stegun (1965)], (8) can be rewritten in terms of  the 
shape factor, 

io(27rp2RRq) = e x p  (-27rp2RRq)~Co(27rpERgq), (9) 

and the Gaussian profile f~(p; t) for ~b = 0. Thus, 

Ill(R, Z)  = 27r E n(F2(Rq, Zq)),  
q 

× fo(P; R -  Rq)io(2zrp2RRq). (10) 

The shape-factor term io in (9) is plotted in Fig. 2. It 
represents the correction to the Gaussian lattice line 
lateral profile due to cylindrical averaging. Notice 

lattice line 
(h,k) 

R B 

Fig. 1. Calculation of  the cylindrically averaged pattern for parallel 
two-dimensionally periodic sheets. Cross section of the intensity 
distribution arising from a single two-dimensional lattice with 
finite coherence at constant Z. Shown emerging from the page 
are the Z axis and a reciprocal-lattice line parallel to it. In real 
space, a lattice plane oriented at the azimuthal angle ff gives 
rise to a reciprocal-lattice line centered at the radius Rg = Rhk 
with a cylindrically symmetric lateral intensity profilef(t), where 
t is the distance from the lattice line. To find the intensity 
contributed at a point B, located at distance R in the cylindrically 
averaged pattern, consider lattices with azimuthal orientation 
between ~ and ~b+d~b. These will contribute intensity 
F h k m F ~ k m f  ( t )  d~b at point B. The total intensity at B is calculated 
by integration over all possible lattice rotations, with the number 
of reciprocal-lattice lines that contribute at B taken into account. 

1.0 

0.5 

0.0 

Rq) 

2rpR 

i t 
o 1 ~ 3 ~ 5 

27rl)2 RRq 

Fig. 2. Cylindrical correction to a Gaussian line profile. The solid 
curve shows the shape correction factor for the lattice line profile 
in the cylindrically averaged pattern from perfectly parallel 
sheets if a Gaussian line profile fc (P; t) is assumed. The dashed 
curve represents the correction factor given by (11), which is 
only valid away from the meridian. 

that this function equals unity at the meridian, where 
R = 0 .  

Equation (10) properly scales near-meridional 
intensities and reduces to an appropriately simple 
form for points away from the meridian. To see this, 
we employ the asymptotic form io(x) = (27rx) -1/2 for 
large x = 2"trp2RRq, which is also plotted in Fig. 2. 
Far from the meridian, where Rq "-R >-2(27r)l/2/p, 

io(27rp 2 RRq) = (27rpR)-l. (11) 

Substituting (11) into (10), we have 

Ill(R , Z)~--(1/p) E n(F2(Rq, Zq))~, 
q 

x f c ( p ;  R-Rq)/Rq, (12) 

which shows that, away from the meridian, 
reciprocal-lattice lines with Gaussian lateral profile 
fc(P; t) give rise to lines with Gaussian profile 
fc(P; R-Rq) in the cylindrically averaged pattern 
and are weighted by 1/R. 

Simulation of disorientation 
Proper simulation of  diffraction data from samples 

with arbitrary disorientation requires a general 
method for the calculation of the intensity distribu- 
tion in Debye-Scherrer  arcs that is valid everywhere 
in reciprocal space and correctly scales near- 
meridional and off-meridional data. We describe 
below how Debye-Scherrer  arcs can be calculated 
from the sample disorientation distribution and used 
in a lookup table to smear out the Ill pattern. 

In a disoriented sample, the probability of finding 
particles (or sheets) at an angle a to the axis of  mean 
orientation in an element of solid angle dO is 
N(a)dO/47r. The sample disorientation distribu- 
tion, N(a), can often be accurately measured or 
modeled from low-angle diffraction data. The theo- 
retical intensity distribution in a disoriented fiber 
pattern, given N ( a ) ,  a layer-line lateral profile and 
the cylindrically averaged squared transform of a 
single particle, has been derived by Holmes & Leigh 
(1974) (referred to here as H&L). To derive the for- 
mula for the Debye-Scherrer  distributions needed to 
smear out Ill patterns, we follow the initial steps and 
notation of  H&L. 

Consider a point B in a cylindrically averaged 
pattern from a disoriented one- or two-dimensionally 
periodic sample and let O be the origin (Fig. 3). The 
intensity at a point B having the spherical polar 
coordinates (o, tr) is found by integration over all 
possible rod or sheet orientations with the density of  
rod vectors or sheet-normal vectors pointing in any 
particular direction and the strength of the intensity 
that such rods or sheets contribute at B taken into 
account, 

/ =  ~ iN(o, y ) N ( a ) d O / 4 7 r ,  (13) 
g2 
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where (v, y)  refer to spherical  polar  coordinates  of  
B in the f rame of  reference fixed by the rod or sheet, 
disoriented by the disorientat ion angle a (Fig. 4). 
This integrat ion may be effected by considerat ion of  
the intensity contr ibuted f rom an arbi t rary cone of  
vectors lying at an angle y =tro to the line OB and 
mult ipl icat ion by the number  of  vectors that  lie 
between angles cro and cro+ dcro. I f  we then integrate 
over ~, the azimuthal  coordinate  a round OB, we have 

Z axis ! 
o" /.s.R .... B 

o 

Fig. 3. Calculation of the intensity distribution in Debye-Scherrer 
arcs. The general point B in the disoriented pattern is described 
by the spherical polar coordinates (o, tr) or the cylindrical polar 
coordinates (R,Z). For any given rod or lattice plane, the 
spherical polar coordinates of B in the rod- or lattice-plane 
frame of reference are (o, 3') and the cylindrical polar coordi- 
nates are (s, l). The axes of the disoriented rods or normal vectors 
of disoriented lattice planes contributing at the point B may be 
grouped into cones of semi-angle 7. A rod gives rise to a line 
of intensity running parallel to the s axis at the coordinate l in 
the frame of reference fixed in the rod. Similarly, a lattice plane 
gives rise to a line of intensity running parallel to the l axis at 
the radial coordinate s in the frame of reference fixed in the 
sheet. The angle of disorientation of a general rod or lattice 
plane, defined by the vector O----C, is O"CO = o~, where 0"0 is 
the axis of mean orientation, q~ is the azimuthal coordinate of 
the vector OC, measured about the line OB. The drawings for 
Figs. 3 and 4 are from Holmes & Leigh (1974), reproduced with 
their permission. 

Fig. 4. Angles used in disorientation. Stereogram showing the 
relationship between angles a, or, 7 and ~o, defined in Fig. 3. 

the contr ibut ion from all such cones, 

2w 

I = ( 4 ~ ) - !  ~ S Ill(o, tro)N(a)sino'odo'odq~. 
q~=0 Cro=0 

(14) 

Since Iil(V,O'o) is cylindrically symmetric,  we re- 
ar range (14) to give 

I = (4~') -1 Ill(v, o'o) sin o'o I N ( a )  dq~ do'o 
tro=0 ~ = 0  

(15) 

and we define 

2"~" 

A(N; o'0, o ' ) = s i n o ' 0  ~ N ( a )  d~p (16) 
qo=O 

to be the distribution of  intensity in a Debye-Sche r re r  
arc, as a funct ion of  the angle tr in the disoriented 
pattern,  which arises f rom a point  in the Iit pat tern 
located at the angle Oo to the Z axis. Then, f rom (15), 
the general  formula  for the intensity distribution in 
the whole disoriented pat tern,  which properly scales 
the meridional  and off-meridional  data,  is 

Iv(v, o')=(47r) -] S Ill(v, O'o)A(N; O'o,o')do" o. 
tr0=O 

(17) 

The Debye-Sche r re r  distr ibutions A(N; tro, o') can 
be evaluated by numerical  integration of  (16) for 
any disorientat ion distribution N(a),  with use of  
the spherical tr iangle relat ion cos a = cos O'o cos cr+ 
sin Oo sin tr cos q~ (refer to Fig. 4 for y = Cro). Thus, 
the shape of the Debye-Sche r re r  distr ibutions 
depends  on the angle of  the unsmeared  intensity to 
the meridian,  Oo, and the disorientat ion distribution, 
N ( a ) ,  but is independent  of  the spherical radius v. 
This fact permit ted us to construct  a lookup table of  
distributions to smear  Ill patterns efficiently. 

With the assumpt ion  of  the special case of  a 
Gauss ian  distribution 

N ( a ) = N ~ ( a o ; a ) = ( 2 / a ~ ) e x p ( - a 2 / Z a ~ )  (18) 

with s tandard  deviat ion ao, the integral in (16) may  
be evaluated analytical ly [see H&L, equat ion (11)]. 
The intensity in a Debye -Sche r re r  arc under  these 
assumpt ions  is 

A~(ao ;  cro, t r ) =  sin croNG(ao; tT--O'o) 

Xio[(sintrosintr)/a 2] (19) 

when expressed as the product  of  the Gauss ian  dis- 
orientat ion distribution for q~--0 and a shape-fac tor  
term io. 

In Fig. 5, Debye -Sche r re r  distributions are plotted 
as a funct ion of  the angle of  a point  in the Iii pat tern,  
tro, with the assumpt ion of  a Gauss ian  disorientat ion 
distr ibution with s tandard  deviat ion ao. Our  com- 
puter  p rogram to calculate these distr ibutions used 
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the general formula (16) for integrating digital 
representations of the disorientation distributions. 
As a test, we compared the shape distributions 
A(N;  Cro, tr), calculated for Gaussian N ( ~ ) ,  to the 
corresponding AG(ao; tr0, or) calculated using the 
analytical equation (19) and found no significant 
differences. With 4 ° disorientation, the arcs away from 
the meridian are approximately Gaussian, centered 
at the angle tr 0 (Fig. 5a). With 15 ° disorientation, 
however, the distributions show a much stronger 
dependence upon tr0 (Fig. 5b). In this case, the 

5 °  orO 

a t  o r ,  ] o  ° o o 
[ A 2 0  3 0  4 5  ° 7 0  ° 9 0 '  

oo__ o 

I I [ I I [ I 
10 ° 30 ° 50 ° 70 ° }0 ° 

(a) 

A(ao,  or) 

a0 = 1 5  ° 

2 0  ° 
oro 

1 0  ° 3 0  ° 
4 5  ° 7 0  ° 9 0  ° 

} I I I I I I I 
10 ° 30 ° 50 ° 70 ° 900 

or 
(b) 

Fig. 5. Plots o f  Debye-Scherrer  arcs for construction of  lookup 
tables. The intensity distr ibution in a Debye-Scherrer  arc arising 
from a point  in an oriented Ill pattern, as a function of  angle 
tr 0, for Gauss ian  disorientat ion distributions with s tandard devi- 
ations (a)  a o = 4  ° and (b) a o =  15 °. Notice the asymmetry  of  
Debye-Scherrer  arcs is most  p ronounced  for points near the 
meridian, where the shape term i 0 varies most rapidly. 

maxima in the Debye-Scherrer  arcs do not occur at 
the corrsponding tr o angles, but are shifted towards 
the meridian; all points at O'o-, 20 ° in the Ill pattern 
correspond to an arc with an maximum on the 
meridian in the disoriented pattern I\/. 

Angular convolution lookup table. The completed 
lookup table was a two-dimensional matrix contain- 
ing the intensity distributions in Debye-Scherrer  arcs, 
for patterns from samples with disorientation N(a) ,  
tabulated in rows for discrete values of the angle tro 
in the Ill coordinate system. The columns correspon- 
ded to discrete values of the angle tr in the coordinate 
system of the disoriented pattern I\/. For computa- 
tionally efficient smearing of single-quadrant Ill pat- 
terns to give single-quadrant I\/ patterns, these 
Debye-Scherrer  distributions were first calculated for 
angles tr o over the domain [0, 7r/2] and o" over the 
domain [0, 7r], both at 1 ° intervals. Tails of the Debye-  
Scherrer distributions that extended across the 
equator at tr = 7r/2 were then 'folded back' and added 
to the original distribution, 

A'(N; tro, O')=A(N; o'o, t r )+A(N;  tro, Tr-o'). (20) 

From the stored lookup table A', single-quadrant 
disoriented patterns from trial models were calculated 
rapidly in spherical polar sampling coordinates, 

90 ° 

I\/(u, t r )=  y" Ili(u, O'o)A'(N; tro, or). (21) 
o'0=0 

Simulation of X-ray beam divergence 

The experimental intensity distribution measured 
from a diffracting sample will depend upon the col- 
limation of the beam. The effect is that the intensity 
distribution calculated by the assumption of perfect 
collimation, I\/, is convoluted with the beam shape 
/beam(R, Z). If the beam, for example, is approxi- 
mated by a two-dimensional Gaussian distribution 
with standard deviations b g and bz, then 

Z + 3 b  Z R + 3 b  R 

I~,c( R, Z)  = Z ~, I\/( R', Z') 
Z ' = Z - 3 b z  R ' = R - 3 b R  

x e x p [ - ( R ' - R ) 2 / 2 b  2 

- ( Z ' - Z ) Z / 2 b 2 ] .  (22) 

Thus, for a trial set of (FZ),, with all the parameters 
and functions in the simulation accounted for and 
the assumption of Gaussian distributions for N, f and 
/beam, the disoriented pattern in spherical polar coor- 
dinates is 

/trial( O, t r )  2 ----/ealc((Ftriar)q,, a, Ceo, p, bg, bz, . . .; o, or). 
(23) 

Here, a represents the appropriate unit-cell con- 
stant(s) and the ellipsis indicates that parameters for 
additional convoluting functions can be included. 
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Adjustment of  the trial (F2)q, by local angular regression 

Once a disoriented diffraction pattern It~ia~(o, O-) 
had been simulated from the 2 (Ftrial)~,, the goal was 
to determine a new set of real numbers 2 (Fadj)~0 that 
would give a disoriented pattern in better accord with 
the experimental (or expected) pattern Iexp(V, O-). In 
spherical-polar coordinates, adjustment coefficients 
K(%,o-q) were needed to correct each of the 
(F2(oq, O-q)) ~,, 

2 = O-q)(Ftrial(Oq, O-q))~,. ( 2 4 )  (Fadj(Oq, O'q))g, K(Oq, 2 

These were estimated from local fits of the trial-model 
disoriented pattern, It~ia~, to the Iexp pattern with use 
of robust linear regression (Andrews, 1974) in small 
angular neighborhoods centered about the (Oq, o-q) 
coordinate of each point q in (Fa)q,. The statistical 
model for the qth local regression was thus 

I~xp(Vq, O'j)--" /<(Oq, O'q)Itrial(Dq, O-j) (25) 

for the sample points in the disoriented patterns 
located on an arc at radius oq centered at O-q, where 
the j th point in the set was located at angle %. The 
weighted least-squares estimate of K was given by 

K(I)q, O'q) =(wjltrial(Oq'2 O-j)Iexp(Oq' O-j))j ( 2 6 )  

( WjItrial( Oq, O-j))j 
We started each local regression with the 

obtained with weights wj = 1 for all j and then per- 
formed three rounds of iterative weight adjustment. 
At each iteration, each new weight wj was based on 
the normalized absolute residual uj from the previous 
fit, 

Uj = Aj/  cM, 
(27) 

aj=JI~xp(Oq, O-j)--~,(Oq, O-q)Itrial(Oq, O-j)I" 
For normalization, we chose M to be the median of 
the Aj and c = 6.0. If uj was greater than 1.0, then the 
sample point j was given the new weight wj--0. 
Otherwise, 

= Uj) . (28) Wj ( 1 -  22 

This is known as the Tukey biweight function 
(Mosteller & Tukey, 1977). Use of this iterative 
weighting function means that, in parts of the patterns 
that have closely spaced lines, a contaminating 
itensity coming from a neighboring line on one side 
will tend to be ignored. Furthermore, the cutoff for 
uj > 1.0 means that noisy sample points with relatively 
large Aj (e.g. outliers in /~xp owing to dust on the 
film) will get zero weight. 

After all the local regressions had been performed, 
each (F2(oq, Oq))q, "was multiplied by the correspond- 
ing ~(Oq, O-q), then a minimum-wavelength constraint 
was applied in the following way. The lines were 
individually Fourier transformed and a 'low-pass' 
filter was applied to remove components correspond- 
ing to Patterson vectors larger than the diameter of 

the rod or thickness of the sheet. The back-trans- 
formed lines were then recombined. 

The entire process of model pattern simulation by 
angular convolution and model adjustment by local 
regression was repeated in a cycle 

= El_ ! (F2(oq, o'q))6 Ki_l(Oq, O-q)( a (oq, O-q))~,, (29) 

Ii(o,o') 2 o'), (30) = Icalc((Fi)q,; o, 

until the differences between /~ and Iexp were mini- 
mized. To monitor convergence, the residual 

Y. o sin O-IIi(v, O-)- Iexp(I), O') I 

~ I  = o.cr 2 D sin O-Iloxp(O, O-)1 (31) 
o.o- 

was evaluated after each new Ii(o, O-) had been simu- 
lated. After convergence, the disoriented lexp pattern 
had been deconvoluted and we obtained the set of 
cylindrically averaged squared structure factors 
resulting from the final adjustment, 

2 O-q)(Ftria,(Oq, O-q))g,. (32) K ( F t r i a l ) g  = 1- I / ( i (  Dq ' 2 
i 

Sample deconvolutions 

Expected model: imperfectly oriented gap junctions 
To test our procedures for decolvolution of dis- 

oriented diffraction patterns, we chose an expected 
model that represented imperfectly oriented gap junc- 
tion membrane pairs containing two-dimensional 
hexagonal lattices of protein channels. In this model, 
each protein channel was represented by a dimer of 
hexamers spanning the membrane pair. Within each 
identical monomer was an ordered domain contain- 
ing irregular rod-shaped columns of density. These 
rods, representing - 3 0  ~ long o~-helical segments, 
were centered within the hydrocarbon cores of the 
membranes, inclined at small angles to the membrane 
normals. In the 'gap' between the membrane pairs 
were additional short rods in each monomer inclined 
at larger angles to the membrane normals. 

In experimental gap junction patterns, the widths 
of the lattice lines increase with increasing order, 
which corresponds to a diverging autocorrelation 
function for the hexagonal array of connexons, i.e. 
the lattice constant fluctuates locally with a standard 
deviation of -5%.  This effect was simulated by 
summation of the ill patterns of three component 
lattices: the mean with lattice constant a = 79.2 ]k and 
weight 0.6, and variants with a = 78.8 and 79.6 ~ and 
weight 0.2, which approximates the effect of a 
Gaussian distribution of lattice constants. The elec- 
tron density profile of the membrane pair in our 
expected model was based on a published analysis 
of experimental gap junction X-ray patterns 
(Makowski, Caspar, Phillips & Goodenough, 1977). 
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For our tests, we var ied the disorientat ion,  ao, of  
the expected model  diffraction patterns 

lcam¢((F~xp),, ao, p, bR, bz; o, tr), (33) lexp(ao) = 2 

which we s imula ted  by smear ing  the Ill pat tern 

2 
lllexp =/ll((FCxp)~,, P; o, tro) (34) 

using lookup tables based  on Oto=4 and  ao = 15 ° 
Gauss ian  disor ientat ion dis t r ibut ions (Fig. 6). In 
these expected disor iented patterns,  l~xp(40) and  
Iexp(15°), ne ighbor ing  l ines are smeared  together on 
the equator  near  0.1 ./k -~, s imi lar  to exper imenta l  gap 
junct ion  patterns (see Tibbi ts  et al., 1990)• To decon- 
volute these test patterns,  we started with two different 

2 . 2 (Ft,~m),. (1) a set (Fpt) ,  cor responding  to un i fo rm 
intensity along each reciprocal-lat t ice line, which is 
the t ransform of  a structureless point  model ;  (2) a 

2 set (F~od), predicted by a physica l ly  p laus ib le  rod 
model  that s imula ted  some features in the expected 

(Ftria|)~, structure. In our test deconvolut ions ,  only 2 
and ao varied, the r ema in ing  parameters  and  samp- 
ling coordinates  were the same;  so we have adopted  

• • 2 
the s imple  notat ion Iiitn~ = lll((Ft~i~m),), lt~i,m(ao) = 

2 2 
/catc((Ftri.i)¢,, Oto) and  l r tdat(ao)  = lc~tc(Ko, o( Ftriat) , ,  
a) .  Here, K~ o refers to the product  of  the ad jus tment  
coefficients made  to the 2 (Ftriat), that min imized  the 
difference between It~i~l(ao) and/~xp(ao) .  

Starting with a rod model 

The rod trial model  represented each protein 
m o n o m e r  in the pai red  connexon  hexamers  by four 

Table  2. Fits to the disoriented target patterns 

ao(°) Trial model 9~i 
4 P o i n t  0.051 

15 P o i n t  0 .033 
4 R o d  0 .092 

15 R o d  0 .039 

form. Since the projected electron density distr ibut ion 
across the m e m b r a n e  was refined using profile fitting 
to the mer id iona l  reflections, the trial mer id ian  was 
set equal  to the expected mer id ian  and not adjusted.  
The poin t -model  t ransform was first used to construct 

2 a n  lllpt = l l l ( (Fpt)¢,)  pattern that was then smeared,  
using lookup tables of  Debye-Scher re r  distr ibutions,  
to give the disor iented pat terns Ira(4°) and  Ipt(15 °) 
shown in Fig. 7. 

In the two deconvolut ions  that start from the point  
model ,  i terative adjus tments  were made  to the 2 (Fpt)O, 
until  the disor iented model  patterns fitted the corre- 
sponding  expected patterns. The closeness of  the final 
fits can be judged  by compar i son  of  the t w o  /Kpt(Oto) 
patterns in Fig. 7 with the /exp(Oto) patterns in Fig. 6; 
the calculated residuals  are given in Table  2. Not 
surprisingly,  a lower residual  ~ !  was obta ined from 
the compar i son  of  Irpt(15 °) with lexp(15 °) than  from 
the compar i son  of  l rp t (4  °) with Iexp(4 °) because the 
very broad  smear ing  in the patterns with 15 ° dis- 
or ientat ion set a l imit  to the impor tance  of  sharp 
features in the under ly ing  (F2)¢, .  

III,xp Iexp (4°) Iex. ( 15 °) 

Z 

l 'q  ,e 

Starting with a point model 

We started with the Four ier  t ransform of  a 'point '  
model ,  in which Re {Fhk=} is a positive constant  and  
Im {Fhk,,} = 0 for all points  hkm in the model  trans- 

R 

1 

; ' tk ,  

Fig. 6. Expected patterns. An oriented pattern simulated from the expected model, lllexp = lll((F2xp)¢, P), with a large constant p, which 
lll((Fexp),) pattern we used in our tests was similar but had gives narrow lattice lines, and with the meridian omitted for clarity. The 2 

the meridian included and line widths that increased with R. This pattern was angularly smeared to simulate two disoriented expected 
l~l¢((Fexp),, ao = 4 °) and leap(15 ). The single quadrant shown corresponds to combined experimental data from p a t t e r n s ,  I e x p ( 4  °)  = 2 o 

untilted and tilted samples in the X-ray beam, after the optical densities scanned from the films are corrected for the curvature of 
the sphere of reflection (Fraser, MacRae, Miller & Rowlands, 1976), a smooth background is subtracted and noise is reduced by 
ram-symmetry averaging (Tibbitts et al., 1990). To display the high- and low-angle portion of the disoriented patterns together on a 
convenient scale, the intensities at each pixel have been mutiplied by the square of their distance from the origin (u2). 
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Gaussian untilted transmembrane cylinders. This 
model was created by building three Gaussian cylin- 
ders of length 30/!, and one of length 10/~ into each 
monomer in a low-resolution map. There were no 
features in the rod trial model that corresponded to 
the short rods near the midplane of the connexon 
pair in the expected map. 

Fig. 8 shows the III pattern from the rod trial model. 
Disorientation was added to this pattern using the 
lookup tables of Debye-Scherrer smearing distribu- 
tions. Fig. 8 also shows the two I, od(a0) patterns and 
the two IKrod(ao) patterns after model adjustment. 
To judge the closeness of the fits, compare IKroa(ao) 
patterns to the corresponding l ,  xp(ao) patterns in Fig. 
6. By comparing the values of ~ t  for the rod-model 
deconvolutions to those for the point model, we were 
able to assess the extent to which model adjustment 
was constrained by introducing node positions based 
on the rod trial model (Table 2). Incorrect node 
positions from the rod model caused the final ~ t  

values to be higher relative to those obtained with 
the point-model starting point. 

Comparison of deconvolution results 

Deconvoluted patterns starting from the point 
model showed that, for the K40( 2 Fpt)~, result, the Z 
coordinates of two or three near-equatorial nodes in 
the 2 (Fexp)~, were indicated by minima in nearly all 
the lattice lines (Fig. 9). In the 2 K15.(Fpt>¢, pattern, a 
similar number of nodes in the 2 (Fexp>~, were indicated 
by minima, but these were much more shallow. Thus, 
the uncertainty in the positions of near-equatorial 
nodes indicated by the results was strongly dependent 
upon, and increased by, the degree of disorientation. 

The resultg gtarting with the rod model showed that 
for the K4o<F~,,o), result most lattice lines between 
R = 0.05 and R = 0.11/~-~ had one near-equatorial 
node, derived from the ( 2 Froa)~, that was not present 
in the 2 (F,xp), (compare Figs. 8 and 9). The same 

Z 

6 o:1 k' 

IIIp, Ip,( 4° ) IKp, (4 ° ) 

b • :? 

R I, t (15°)  ' IKp (15°) 

Fig. 7. Adjustment of the point model. The transform of  a point model, which has uniform intensity on each lattice line (h, k), was 
2 

used to calculate the/llpt =/ll(<Fpt)¢,) pattern. Some lines appear stronger relative to the others because they have multiple overlapping 
azimuthal components. We generated the lp,(4 °) and ]pt(15 °) patterns by smearing a similar /llpt pattern with the expected model 
meridian added to it. The following sequence of  operations successfully minimized the difference between the model and expected 
patterns. The once-adjusted <F2), were used to recalculate a model disoriented pattern, then readjusted to fit the data. This process 
was repeated for eight cycles. Each line was then individually Fourier transformed and a low-pass filter with a soft edge at 90/~ was 
applied to impose the minimum-wavelength constraint. A second round of eight simulations/adjustments was then performed. The 
minimum-wavelength constraint was then applied a second time. With the VMS operating system in a low-priority batch queue and 
all these operations performed with 385 x 512 pixel floating-point image arrays (in spherical polar coordinates) required approximately 
30 min CPU time on a VAXstation 3100 workstation configured with 32 Mbytes of  memory. The adjusted model disoriented patterns 

Icalc(K4*(Fpt)¢,, a o = 4 °) and IKpt(15°). are /r~(4 °) = 2 



lattice lines in the 2 Klso(Frod)~0 result showed two or 
more incorrect nodes that retained their positions 
from the starting model. Thus, as seen before with 
the deconvolutions starting with uniform intensities, 
increased disorientation extended the region near the 
equator where the position of nodes could not be 
well determined. 

To evaluate our deconvolution results quantita- 
tively, we calculated residual curves ~<F2>(R), com- 
paring each 2 2 K(Ft,al)o, with the (Fexp),, and plotted 
the results in Fig. 10. Note the higher residuals of tSe 
K15.(F2t)~, and Kls*(F~od)~, curves relative to the 
K40(F2t)~, and K4o(F2od)g, curves. This indicates that, 
even though the IKpt( 15 °) and IKrod( 15 °) patterns were 
better fits to the expected pattern lexp(15 °) than the 
IK . t (4  °) and IKrod(4 °) patterns were to  lexp(4°),  the 
(F~)0, resulting from these deconvolutions were less 
reliable. 

Electron density maps o f  the adjusted rod model 

A three-dimensional electron density map was 
calculated from the 2 K4o(Frod)g, result and azimuthal 
separation information from the rod trial model, with 
use of the fast Fourier transform 4, 

PKrod(r, Z, O) = t " - q  --hkm, rod[. (35) 

Z 

This map was compared to maps of the trial rod and 
expected models, Prod(r, Z, 0) = ~(Fhkm.rod) and 
Pexp(r, Z, O) = ~(Fhkm.exp), to  see  h o w  i t e r a t i ve  c o n v o -  
l u t i o n  and regression changed features in the trial 
map to be more like those in the expected map. 

In a transverse section near the center of the mem- 
brane bilayer (z = 39.5 A), the expected map showed 
the connexon represented by high-density protein 
surrounded by relatively featureless lower-density 
regions representing lipid hydrocarbon chains (Fig. 
11). The corresponding section from the trial map 
showed a hexagonal arrangement of six monomers, 
each containing three regular untilted Gaussian rods. 
In the new Prrod map, features appeared that are 
similar to those in the expected structure: elongated 
concentrations of density replaced the uniform and 
circular rod cross sections and regions of low density 
appeared between the monomers. 

Also shown in Fig. 11 are transverse sections near 
the midplane of the paired hexamers (z = 5 A,). For 
this portion of the structure, there were short segments 
in Pexp of rod-like density and Prod was simply a 
low-resolution map. Nevertheless, the Pgrod map 
showed that concentrations of density appeared as a 
result of the adjustments made to the (F~od), by our 
iterative convolution and local regression procedures. 

I [  frod I,.od ( 4 ° ) /K oa (4 ° ) 

t ' !  

5 o:1 R 

p 

, . l , d |  l , . 

THOMAS T. TIBBITTS AND D. L. D. CASPAR 541 

Lo,  ( 15 ° ) fK rod ( 15 ° ) 

Fig. 8. Adjustment of the rod model. Diffraction patterns from the two deconvolution procedures that used the rod trial model: the 
disoriented trial model pattern lllrod; the trial disoriented pattern lrod(4°); the adjusted model disoriented pattern IK,od(4°); the trial 
disoriented pattern l,od(15°); and the adjusted model disoriented pattern IK~od(15°). 
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Only the relative magnitudes of the cylindrically 
averaged squared structure factors in the trial model 
were adjusted but this gave rise to new features in 
the corresponding map that were a good first approxi- 
mation to peaks of protein density in the expected 
structure. The Prroa sections also show features that 
have arisen in the space between the hexamers - 
regions that were featureless in the low-resolution 
map. 

Discussion 

Our simulation and local regression procedures, 
which use a lookup table for the intensity distribution 
in Debye-Scherrer arcs, provide a simple and efficient 
way to deconvolute diffraction patterns from imper- 
fectly oriented samples. The simulation procedures 
we use can take into account disorder within periodic 
rods or sheets and smearing due to beam divergence 
and other functions. By using local angular 
regression, cylindrically averaged squared structure 
factors based on an arbitrary starting model can be 
adjusted to be consistent with the diffraction data. 
Our procedures can therefore provide good initial 
estimates of the cylindrically averaged squared struc- 
ture factor from only the degree of disorientation Oto, 

a coherence length p and the constant(s) needed to 
index the lines in the pattern. 

In our sample deconvolutions of gap junction 
diffraction patterns, the choice of the rod trial model 
enforced some a priori constraints on the model 
adjustment procedure. The rod model, although 
approximating the expected structure, defined some 
near-equatorial nodes that were badly placed and 
these held to their original positions. From a com- 
parison of the final fits, a lower residual ~ i  was 
obtained for IKpt(4°), which resulted from the adjust- 
ment of uniform intensities to fit the Iexp(4 °) pattern, 
than for IKrod(4°), which started from the transform 
of the physically plausible model. Increased smearing 
due to disorientation, however, diminished the 
importance of constraints on the trial model; very 
good fits to the lexp(15 °) pattern were found with 
either trial model as a starting point (~ i  = 0.03). 

Better fits were found to the I~xp(15 °) expected 
pattern than to I~xp(4 °) but the resulting 2 Klso(F t r i a l ) ,  
values were less reliable than the K4o(F2rian), decon- 
volutions, as indicated by their higher residuals ~<F5" 
Near the equator in patterns from disoriented two- 
dimensionally periodic samples, the direction of 
smearing is parallel to the lattice lines. As the 

,hi . 

< F 2  > 5  
e x p  

Z 

K4o < F 2 
rod > ~ b  

I 

O , '0J , 
, i l l  '° ", 

K4o < Yp 2 >~b) 

6 R K l  5 ° < Fr2od > ¢ 

lil' '"°" o o H t  II  t j I 
1 

! 

,Ill . l,l h , .  • 

KI5 ° <Fp 2 > ' k )  

Fig. 9. Deconvolution results, lll((F2xp),), representing the cylindrically averaged squared structure factors from the expected model 
(which is the same as in Fig. 6), is shown for comparison to the results. 11 patterns are shown for 2 2 K 4o( Frod) ,, K 4 * ( F p t ) ¢  , and which 
resulted from deconvolution of the lexp(4 °) pattern; and for 2 2 Kiso(Frod)~,, Kis.(Fpt)q, and which resulted from deconvolution of  the 
lexp(15 °) pattern. The meridional intensities were included during all the tests but were held constant and are not shown. 
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0.5 

T ~ < F 2  > 

~ J  

rod 

15" " /  
/ ~  ~ pt 

/ , 

/, 
j '  

~ ~ 4" - - / - - ! o d  

- 

i 
o o'.os ~ (,t-,) 6)0 

Fig. 10. Reliability ofiterative convolution and local regression. To quantitate 
the agreement between sets of  cylindrically averaged squared structure 
factors (F2odet)~, and their expected values (F2xp)~,, we calculated residuals 

2 - -  2 2 - 2 defined as ~<F > ( R ) -  ~.q I(Fmodet)q,-(Fexp)¢,l/~q (Fexp) @. The four curves 
show the dependence of  ~<F2> on resolution as lattice lines at increasing 
lateral distance R from the meridian are included in the comparison. The 

2 2 2 dashed curves compare g4o(Fpt)@ and Ktso(Fpt),l, to (Fexp) @. The solid 
2 2 2 curves compare K4o(Frod)~, and Kls°(Frod)¢, to (Fexp) ~. 

gexp 

z = 3 9 . 5 ~  z = 5 ~  40 

p K r o d  

prod 

Fig. 11. Comparison of  adjusted rod model map to the expected map. Transverse sections of the three-dimensional electron density 
maps for the expected model, the adjusted rod model and the rod trial model. The sections were taken at z = 39.5 and z = 5.0/~, 
measured from the midplane of  the paired connexon hexamers. 
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disorientation increases, so does the extent to which 
near-equatorial features of the intensity distribution 
are blurred. Furthermore, the degree of angular over- 
lap of off-equatorial intensities arising from different 
lines increases. Thus, for both trial models, the decon- 
volutions of the /exp(15 °) pattern were less reliable 
than the deconvolutions of Iexp(4°), despite the fact 
that the disoriented patterns IKpt(15 °) and IKrod(15 °) 
gave the lowest residuals ~x. 

To refine models exactly, iterative convolution 
adjustment procedures must be combined with 
independent structural information. The first step is 
to build a plausible low-resolution model. This can 
be derived from electron-microscopic data and initial 
deconvolution of the diffraction pattern using a point 
model. Each refinement cycle begins with adjustment 
of the trial model (F2), to be consistent with the 
diffraction pattern. After Fourier transformation of 
the adjusted model structure factors, modifications 
are made to the density distribution based on features 
in electron micrographs and other structural data. 
The cycle is repeated until the electron density map 
is no longer changed by the application of the model 
constraints. Since each deconvolution of the diffrac- 
tion pattern partially depends upon the trial model 
used, the progressively better models produced in the 
refinement will give better initial angular and lateral 
separation of closely spaced intensities in the diffrac- 
tion data. 

In fiber difffracton patterns from rod-like helical 
arrangements of subunits such as F-actin, the highest- 
resolution data usually appear on or near the meridian 
(see Holmes et al., 1990). Unfortunately, the effects 
of disorientation are most pronounced near the 
meridian in fiber patterns, which makes numerical 
deconvolution of these data difficult. Furthermore, 
the shape of the Debye-Scherrer arcs near the 
meridian are asymmetric, so that correction factors 
based on the assumption of approximately Gaussian 
arcs cannot scale these data properly to the rest of 
the pattern. For filaments with well characterized 
subunits (such as actin and mutant hemoglobins), 
monomers can be built into a low-resolution map of 
the polymeric form. Our convolution and local- 
regression procedures make it possible to refine their 
positions in the assembled filament against all the 
measurable fiber diffraction data for consistency. To 
refine models to near-atomic resolution, stereo- 
chemical constraints and energy minimization can be 
applied to enforce appropriate bond angles and 
plausible van der Waals contacts (see, for example, 
Hendrickson & Konnert, 1980a, b). Thus, with 
sufficient model constraints, our iterative angular con- 
volution and local regression procedures provide a 
method for the refinement of current models of rod- 
like and sheet-like biological assemblies to sig- 
nificantly higher resolution using high-angle parts of 
disoriented diffraction patterns where intensities can- 

not be reliably deconvoluted by matrix inversion- 
based numerical procedures. 
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Abstract 

A new variation on the established procedure to 
evaluate three-phase structure invariants through 
quadrupole relationships is described. This method 
differs from earlier algebraic formulations in that the 
cosine-invariant estimates are based on a conditional 
observed frequency distribution of I EI magnitudes 
for the quadrupole, rather than on the values of the 
magnitudes themselves. Successful applications of 
this method to a number of structures that ranged in 
size from 84 to 317 independent non-hydrogen light 
atoms are given. 

Introduction 

The three-phase crystallographic structure invariants 
play a central role in the determination of crystal 
structures by direct-phasing methods. Tangent- 
formula methods for small-molecule determinations 
have traditionally relied on the 0 (modulo 27r) proba- 
bility estimate for these 'triples' (Karle & Hauptman, 
1956). Efforts to extend these techniques to larger 
structures have required more precise estimates to be 
obtained for these phase invariants, though use of 
algebraic formulae (Karle & Hauptman, 1957; 
Vaughan, 1958; Hauptman, 1964; Hauptman, Fisher, 
Hancock & Norton, 1969; Karle, 1970; Duax, Weeks 
& Hauptman, 1972; Hauptman & Duax, 1972), deter- 
minantal joint probability distributions (Tsoucaris, 
1970; Messager & Tsoucaris, 1972; Giacovazzo, 1976, 
1977a; Karle, 1979, 1980) or probabilistic formulae, 
as applied to isomorphous-replacement or anoma- 
lous-dispersion data (Hauptman, 1982; Giacovazzo, 
1983; Fortier, Moore & Frazer, 1985) and to the 
extended neighborhoods or phasing shells of data 
that define higher-order relationships into which these 
triples have been suitably embedded (Hauptman, 
1975; Giacovazzo, 1977b; Karle, 1982). This report 
describes a new method to estimate three-phase 
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invariants based on examination of the frequency 
distribution of ILl magnitudes that complete a family 
of conditionally constructed quadrupoles that are 
common to the evaluated triple. 

Background 

One of the earliest strategies in direct-methods 
research was the development of formulae to evaluate 
crystal-structure phase invariants and semi-invariants 
as a means to determine crystal structures. This work 
was initiated about the same time that the rules for 
origin and enantiomorph specification and phase- 
extension techniques were being developed. For- 
mulae to estimate the single-phase structure 
invariants had an immediate application; they pro- 
vided a means to reduce the number of algebraic 
symbols that had to be permuted and tested for a 
selected starting group of phases. But algebraic for- 
mulae that were developed for the determination of 
the cosine values of the three-phase structure 
invariants, for example, for P1 symmetry (Karle & 
Hauptman, 1957), 

[EhE-kEk_h[ COS (~Ph- (~k "3t- ~k--h) 

~- N - ' / 2 ( I E h l  2 + IEkl 2 + [Ek_h] 2 -  2) 

-t-½ N3/2< (I E,I 2 -  1) (I E,-k] 2 -  1)(I E,-hl 2 -  1))i, (1) 

however, did not have an immediate impact on phas- 
ing practices. Firstly, these formulae were computa- 
tionally demanding; the average of a product of 
ILl 2-1  magnitudes had to be computed over a range 
of I that sampled the whole of reciprocal space and, 
to ensure that the whole of reciprocal space was 
explored, the diffraction vectors of the triple, h, - k  
and k - h ,  had to be cyclicly permuted within the 
framework of the formula. Secondly, numerical tests 
indicated that (1) tended to produce unreliable cosine 
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